Security Proofs for the MD6 Hash Algorithm

Ahmed Ezzat
Outline

- Introduction to hash algorithms
- NIST SHA-3 Competition
- MD6 Algorithm and Mode of Operation
- Research Objective
- Approach
Introduction to hash algorithms

- Hash function definition

Usage Scenarios
- Digital Signature
- Message Integrity
- Password Verification
Introduction to hash algorithms

- Properties
 - Collision resistance
 - First pre-image resistance
 - Second pre-image resistance
 - Pseudo randomness
 - Unpredictability
NIST SHA-3 Competition

- Salted Hashing
- Parellizable

Requirements for a message digest of d-bits:
 - Collision resistance of approximately $d/2$ bits.
 - First - preimage resistance of approximately d bits.
 - Second - preimage resistance of approximately $d - k$ bits for any message shorter than 2^k bits.
MD6 Algorithm and Mode of Operation

- Input message structure
MD6 Algorithm and Mode of Operation

- **Input:** \(A[0..88] \) of \(A[0..16r+88] \)
 - for \(i = 89 \) to \(16r+88 \):
 - \(x = S_i \oplus A[i-17] \oplus A[i-89] \)
 - \(\oplus (A[i-18] \land A[i-21]) \)
 - \(\oplus (A[i-31] \land A[i-67]) \)
 - \(x = x \oplus (x \gg r_i) \)
 - \(A[i] = x \oplus (x \ll l_i) \)
 - return \(A[16r+73..16r+88] \)
MD6 Algorithm and Mode of Operation

- Mode of operation snapshot
MD6 Algorithm and Mode of Operation

<table>
<thead>
<tr>
<th>Variable</th>
<th>Default</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>$-$</td>
<td>the data block portion of a compression function input.</td>
</tr>
<tr>
<td>b</td>
<td>64</td>
<td>the number of words in array B.</td>
</tr>
<tr>
<td>C</td>
<td>$-$</td>
<td>the output of the compression function.</td>
</tr>
<tr>
<td>c</td>
<td>$16w$</td>
<td>number of bits in the "chaining variable" C.</td>
</tr>
<tr>
<td>d</td>
<td>$-$</td>
<td>number of bits in the MD6 final output ($1 \leq d \leq 512$).</td>
</tr>
<tr>
<td>f</td>
<td>$-$</td>
<td>the MD6 compression function mapping ${0,1}^{n+k}$ to ${0,1}^{w}$.</td>
</tr>
<tr>
<td>K</td>
<td>0</td>
<td>the key variable (an input to f).</td>
</tr>
<tr>
<td>k</td>
<td>$8w$</td>
<td>number of bits in the key variable K.</td>
</tr>
<tr>
<td>$keylen$</td>
<td>0</td>
<td>the length in bytes of the supplied key; $0 \leq keylen \leq kw/8$.</td>
</tr>
<tr>
<td>ℓ</td>
<td>$-$</td>
<td>the level number of a compression node.</td>
</tr>
<tr>
<td>L</td>
<td>31</td>
<td>mode parameter (maximum level number).</td>
</tr>
<tr>
<td>N</td>
<td>$-$</td>
<td>the non-key, non-Q piece of the compression function input.</td>
</tr>
<tr>
<td>n</td>
<td>$66w$</td>
<td>the size of N (in bits).</td>
</tr>
<tr>
<td>p</td>
<td>$-$</td>
<td>the number of padding bits in a data block B.</td>
</tr>
<tr>
<td>Q</td>
<td>$-$</td>
<td>an approximation to $\sqrt{6}$ (see [32, Appendix A]).</td>
</tr>
<tr>
<td>q</td>
<td>15</td>
<td>the length of Q in words.</td>
</tr>
<tr>
<td>U</td>
<td>$-$</td>
<td>one-word unique node ID.</td>
</tr>
<tr>
<td>u</td>
<td>1</td>
<td>length of U in words.</td>
</tr>
<tr>
<td>V</td>
<td>$-$</td>
<td>a control word input to a compression function.</td>
</tr>
<tr>
<td>v</td>
<td>1</td>
<td>length of V in words.</td>
</tr>
<tr>
<td>w</td>
<td>64</td>
<td>the number of bits in a word.</td>
</tr>
<tr>
<td>z</td>
<td>$-$</td>
<td>flag bit in V indicating this is final compression.</td>
</tr>
</tbody>
</table>

The MD6 Mode of Operation

Input:

- M: A message M of some non-negative length n in bits.
- d: The length d (in bits) of the desired hash output, $1 \leq d \leq 512$.
- K: An arbitrary $k = 8$ word "key" value, containing a supplied key of $keylen$ bytes.
- L: A non-negative mode parameter (maximum level number, or number of parallel passes).
- r: A non-negative number of rounds.

Output:

- D: A d-bit hash value $D = M_{d,K,L,r}(M)$.

Procedure:

Initialize:

- Let $\ell = 0$, $M_0 = M$, and $m_0 = m$.

Main level-by-level loop:

- Let $\ell = \ell + 1$.
- If $\ell = L + 1$, return $SEQ(M_{\ell-1}, d, K, L, r)$ as the hash function output.
- Let $M_\ell = PAR(M_{\ell-1}, d, K, L, r, \ell)$. Let m_ℓ be the length of M_ℓ in bits.
- If $m_\ell = c$ (i.e., if M_ℓ is c words long), return the last d bits of M_ℓ as the hash function output. Otherwise, return to the top of the main level-by-level loop.
MD6 Algorithm and Mode of Operation

The (Optional) MD6 SEQ Operation

Input:
- M_L: A message of some non-negative length m_L in bits.
- d: The length d (in bits) of the desired hash output, $1 \leq d \leq 512$.
- K: An arbitrary $k = 8$-word key value, containing a supplied key of k bytes.
- L: A non-negative mode parameter (maximum tree height).
- r: A non-negative number of rounds.

Output:
- D: A d-bit hash value.

Procedure:

Initialize:
- Let Q denote the array of length q as obtained by the following:

 - The MD6 compression function f_6 (see Section 2.2)

 - The MD6 compression function f_{6-1} (see Section 2.2)

Main loop:
- Let C_{L-1} be the zero vector of length $c = 16$ words. (This is the τ^{ℓ_0})
- Extend input M_L if necessary (and only if necessary) by appending zero bits until its length becomes a positive integral multiple of $(b - c) = 48$ words. Then M_L can be viewed as a sequence $B_0, B_1, \ldots, B_{L-1}$ of $(b - c)$-word blocks, where $j = \max(1, \lfloor mL/(b - c)\rfloor)$.
- For each $(b - c)$-word block B_i, $i = 0, 1, \ldots, j - 1$ in sequence, compute C_i as follows:
 - Let p be the number of padding bits in B_i, where $0 \leq p \leq 3072$. (We can only be nonzero when $i = j - 1$).
 - Let $k = 1$ if $i = j - 1$, otherwise let $k = 0$. (Set $k = 1$ only for the last block to be compressed in the complete MD6 computation.)
 - Let V be the one-word value $\tau^{\ell_0} + 2^6 - 1$ (see Figure 2-2).
 - Let $U = L - 2^6 + k$ be a "unique" number ID — a one-word value unique to this compression function operation.
 - Let $C_i = f_6(U V B_i)$. (The C_i has length $c = 16$ words.)
- Return the last d bits of C_{L-1} as the hash function output.

The MD6 PAR Operation

Input:
- M_{L-1}: A message of some non-negative length m_{L-1} in bits.
- d: The length d (in bits) of the desired hash output, $1 \leq d \leq 512$.
- K: An arbitrary $k = 8$-word key value, containing a supplied key of k bytes.
- L: A non-negative mode parameter (maximum level number, or number of parallel processes).
- r: A non-negative number of rounds.
- ℓ: A non-negative integer level number, $1 \leq \ell \leq L$.

Output:
- M_L: A message of length m_L in bits, where $m_L = 1024 - \max(1, \lfloor m_{L-1}/0000\rfloor)$.

Procedure:

Initialize:
- Let Q denote the array of length q as obtained by the following:

 - The MD6 compression function f_6 (see Section 2.2)

 - The MD6 compression function f_{6-1} (see Section 2.2)

Shrink:
- Extend input M_{L-1} if necessary (and only if necessary) by appending zero bits until its length becomes a positive integral multiple of $b = 64$ words. Then M_{L-1} can be viewed as a sequence $B_0, B_1, \ldots, B_{L-1}$ of b-word blocks, where $j = \max(1, \lfloor mL/b \rfloor)$.
- For each b-word block B_i, $i = 0, 1, \ldots, j - 1$ in sequence, compute C_i as follows:
 - Let d denote the number of padding bits in B_i, where $0 \leq d \leq 4096$. (We can only be nonzero for $i = j - 1$).
 - Let $k = 1$ if $i = j - 1$, otherwise let $k = 0$. (The $k - 1$ only for the last block to be compressed in the complete MD6 computation.)
 - Let V be the one-word value $\tau^{\ell_i} + 2^6 - 1$ (see Figure 2-2).
 - Let $U = L - 2^6 + k$ be a "unique" number ID — a one-word value unique to this compression function operation.
 - Let $C_i = f_6(U V B_i)$. (The C_i has length $c = 16$ words.)
- Return $M_L = C_0 \mid C_1 \mid \ldots \mid C_{L-1}$.

Properties Remaining

- Second pre-image resistance
- Unpredictability
Research Objective

The continuation of the security proofs for the MD6 hash function mode of operation
Approach

- Mathematical
- Empirical
References

