Similarity and clustering
Dr. Ahmed Rafea
Outline

• Motivation
• Clustering: An Overview
• Approaches
• Partitioning Approaches
• Geometric Embedding Approaches
• Web pages Clustering: An Example
Motivation

• Problem: Query word could be ambiguous:
 – Eg: Query “Star” retrieves documents about astronomy, plants, animals etc.
 – Solution: Visualisation
 • Clustering document responses to queries along lines of different topics.

• Problem 2: Manual construction of topic hierarchies and taxonomies
 – Solution:
 • Preliminary clustering of large samples of web documents.

• Problem 3: Speeding up similarity search
 – Solution:
 • Restrict the search for documents similar to a query to most representative cluster(s).
Clustering: An Overview (1/3)

- **Task**: Evolve measures of similarity to cluster a collection of documents/terms into groups within which similarity within a cluster is larger than across clusters.

- **Cluster Hypothesis**: Given a `suitable` clustering of a collection, if the user is interested in document/term \(d/t \), he is likely to be interested in other members of the cluster to which \(d/t \) belongs.

- **Similarity measures**
 - Represent documents by TFIDF vectors
 - Distance between document vectors
 - Cosine of angle between document vectors

- **Issues**
 - Large number of noisy dimensions
 - Notion of noise is application dependent
Clustering: An Overview (2/3)

- **Two important paradigms:**
 - Bottom-up agglomerative clustering
 - Top-down partitioning

- **Visualisation techniques:** Embedding of corpus in a low-dimensional space

- **Characterising the entities:**
 - *Internally:* Vector space model, probabilistic models
 - *Externally:* Measure of similarity/dissimilarity between pairs
Clustering: An Overview (3/3)

• Parameters
 - Similarity measure: (e.g.: cosine similarity) \(\rho(d_1,d_2) \)
 - Distance measure: (e.g.: Euclidian distance) \(\delta(d_1,d_2) \)
 - Number “k” of clusters

• Issues
 - Large number of noisy dimensions
 - Notion of noise is application dependent
Clustering: Approaches

• Partitioning Approaches
 – Bottom-up clustering
 – Top-down clustering

• Geometric Embedding Approaches
 – Self-organization map
 – Multidimensional scaling
 – Latent semantic indexing

• Generative models and probabilistic approaches
 – Single topic per document
 – Documents correspond to mixtures of multiple topics
Partitioning Approaches (1/5)

• Partition document collection into \(k \) clusters

• Choices: \(\{D_1, D_2, ..., D_k\} \)
 - Minimize intra-cluster distance \(\sum_i \sum_{d_1, d_2 \in D_i} \delta(d_1, d_2) \)
 - Maximize intra-cluster semblance \(\sum_i \sum_{d_1, d_2 \in D_i} \rho(d_1, d_2) \)

• If cluster representations \(D_i \) are available
 - Minimize \(\sum_{i \in D_i} \sum_{d \in D_i} \delta(d, D_i) \)
 - Maximize \(\sum_{i \in D_i} \sum_{d \in D_i} \rho(d, D_i) \)

• Soft clustering
 - \(d \) assigned to \(D_i \) with “confidence” \(z_{d,i} \)
 - Find \(z_{d,i} \) so as to minimize \(\sum_i \sum_{d \in D_i} z_{d,i} \delta(d, D_i) \) or maximize \(\sum_i \sum_{d \in D_i} z_{d,i} \rho(d, D_i) \)

• Two ways to get partitions - *bottom-up clustering* and *top-down clustering*
Partitioning Approaches (2/5)

- **Bottom-up clustering (HAC)**
 - Initially, G is a collection of singleton groups, each with one document.
 - Repeat
 - Find Γ, Δ in G with max similarity measure, $s(\Gamma \cup \Delta)$
 - Merge group Γ with group Δ
 - For each Γ keep track of best Δ
 - Use above info to plot the hierarchical merging process (DENDOGRAM)
 - To get desired number of clusters: cut across any level of the dendogram
A Dendogram presents the progressive, hierarchy-forming merging process pictorially.
Partitioning Approaches (4/5)

- **Bottom-up**
 - Requires quadratic time and space

- **Top-down or move-to-nearest**
 - Internal representation for documents as well as clusters
 - Partition documents into `k` clusters
 - 2 variants
 - “Hard” (0/1) assignment of documents to clusters
 - “soft” : documents belong to clusters, with fractional scores

 - **Termination**
 - when assignment of documents to clusters ceases to change much OR
 - When cluster centroids move negligibly over successive iterations
Partitioning Approaches (5/5)

- **Top-down clustering**
 - *Hard k-Means*: Repeat...
 - Choose \(k \) arbitrary ‘centroids’
 - Assign each document to nearest centroid
 - Recompute centroids
 - *Soft k-Means*:
 - Don’t break close ties between document assignments to clusters
 - Don’t make documents contribute to a single cluster which wins narrowly
 - Contribution for updating cluster centroid \(\mu_c \) from \(d \) document related to the current similarity between and \(\mu_c \):
 \[
 \Delta \mu_c = \eta \frac{\exp(-|d - \mu_c|^2)}{\sum_{\gamma} \exp(-|d - \mu_\gamma|^2)} (d - \mu_c)
 \]
 \[
 \mu_c = \mu_c + \Delta \mu_c
 \]
Geometric Embedding Approaches (1/2)

- **Self-Organization Map (SOM)**
 - Like soft k-means
 - Determine association between clusters and documents
 - Associate a representative vector μ_c with each cluster and iteratively refine μ_c
 - Unlike k-means
 - Embed the clusters in a low-dimensional space right from the beginning
 - Large number of clusters can be initialized even if eventually many are to remain devoid of documents
 - Each cluster can be a slot in a square/hexagonal grid.
 - The grid structure defines the neighborhood $N(c)$ for each cluster c
 - Also involves a proximity function $h(c, \gamma)$ between clusters γ and c
Geometric Embedding Approaches (2/2)

• SOM : Update Rule
 - Like Neural network
 • Data item d activates neuron (closest cluster) c_d as well as the neighborhood neurons $N(c_d)$
 • Eg Gaussian neighborhood function
 $$h(c, \gamma) = \exp\left(\frac{\| \mu_c - \mu_\gamma \|^2}{2\sigma^2(t)}\right)$$
 • Update rule for node γ under the influence of d is:
 $$\mu_\gamma(t+1) = \mu_\gamma(t) + \eta(t) h(\gamma, c_d)(d - \mu_\gamma)$$
 • Where $\eta(t)$ is the learning rate parameter
Web Pages Clustering: An Example (1/8)

- **Content-link Clustering**
 - The content-link hypertext clustering uses a hybrid similarity function that includes hyperlink and term components.
 - The first component, \(S_{\text{links}}^{ij} \), measures the similarity between hypertext documents \(d_i \) and \(d_j \) based on their hyperlink structures.
 - The second component, \(S_{\text{terms}}^{ij} \), measures the similarity between hypertext documents \(d_i \) and \(d_j \) based on the document terms.
 - The similarity between two hypertext documents, \(S_{\text{hybrid}}^{ij} \), is a function of \(S_{\text{links}}^{ij} \) and \(S_{\text{terms}}^{ij} \), as shown in this equation:
 \[
 S_{\text{hybrid}}^{ij} = F(S_{\text{terms}}^{ij} ; S_{\text{links}}^{ij})
 \]
Web Pages Clustering: An Example (2/8)

• A Simple Hyperlink Similarity Function
 - The measure of the hyperlink similarity between two documents, captures three important notions
 • A path between two documents,
 • The number of ancestor documents that refer to both documents in question, and
 • The number of descendant documents that both documents refer to.
Web Pages Clustering: An Example (3/8)

• Direct Paths
 - We hypothesize that the similarity between two documents varies inversely with the length of the shortest path between the two documents.
 - A link between documents d_i and d_j establishes a semantic relation between the two documents.
 - As the length of the shortest path between the two documents increases, the semantic relation between the two documents tends to weaken.
 - Because the hypertext links are directional, we consider both shortest path $d_i \rightarrow d_j$ and $d_j \rightarrow d_i$.
 - This Equation shows S_{ij}^{spl}, the component of the hyperlink similarity function that considers shortest paths between the documents:
 \[S_{ij}^{spl} = \frac{1}{2} (spl_{ij}^{\rightarrow}) + \frac{1}{2} (spl_{ji}^{\rightarrow}) \]
Web Pages Clustering: An Example (4/8)

• Common Ancestors

- The similarity between two documents is proportional to the number of ancestors that the two documents have in common.

- As with S^{spl}_{ij}, the semantic relation tends to weaken as the paths between the citing articles a_i's and the cited document c_i's increases. This equation shows S^{anc}_{ij},

$$S^{\text{anc}}_{ij} = \sum_{x \in \text{common ancestors}} \frac{1}{2(spl^{x_i} + spl^{x_j})}$$
Web Pages Clustering: An Example (5/8)

• Common Descendants
 - The similarity between two documents is also proportional to the number of descendants that the two documents have in common.
 - This Equation shows S_{ij}^{dsc},

$$S_{ij}^{\text{dsc}} = \frac{1}{2(spl_{ix}^j + spl_{ix}^i)} \sum_{x \in \text{common descendants}}$$
Web Pages Clustering: An Example (6/8)

- Complete Hyperlink Similarity

 - The complete hyperlink similarity function between two hyperlink documents d_i and d_j, S_{ij}^{links}, is a linear combination of the above components:

$$S_{ij}^{\text{links}} = W_d \cdot S_{ij}^{\text{dse}} + W_a \cdot S_{ij}^{\text{anc}} + W_s \cdot S_{ij}^{\text{spl}}$$
Web Pages Clustering: An Example (7/8)

- Term-Based Document Similarity Function
 - The weight function, in this work, used term frequency and document size factors, but did not include collection frequency.
 - Term weights also consider term attributes. The weight function assigned a larger factor to terms with attributes title, header, keyword and address than the weight factor assigned to text terms.
Web Pages Clustering: An Example (8/8)

• Term-Based Document Similarity Function

 • The total weight \(w_{ki} \) of a term \(t_i \) in document \(d_k \) is calculated based on the term similarity function as shown in the figure.

 • The weight factor \(w_{at} \) is configurable on a per server basis, but defaults to 10 for titles, 5 for headers, keywords, and addresses, and 1 for text attribute types.

 • The term-based similarity function \(S_{terms}^{ij} \) between documents \(d_i \) and \(d_j \) is the normalized dot product of the terms vectors representing each document.

 \[
 S_{terms}^{ij} = \sum_t w_{it} \cdot w_{jt}
 \]

Let

\[t_{f_{ki}} = \text{term frequency of } t_i \text{ in } d_k \]
\[w_{tf_{ki}} = \text{contribution to weight from frequency } t_{f_{ki}} \]
\[w_{ds_{ki}} = \text{contribution to weight from size of } d_k \]
\[w_{at_{ki}} = \text{contribution to weight from term attribute} \]

then

\[w_{tf_{ki}} = (0.5 + 0.5 \frac{t_{f_{ki}}}{\max_j \{t_{f_{kj}}\}}) \] \hspace{1cm} (6)
\[w_{ds_{ki}} = \frac{1}{\sqrt{\sum_i (w_{at_{ki}} w_{tf_{ki}})^2}} \] \hspace{1cm} (7)
\[w_{ki} = w_{tf_{ki}} \cdot w_{ds_{ki}} \cdot w_{at_{ki}} \] \hspace{1cm} (8)