Text Classification

Dr. Ahmed Rafea
Supervised learning

- Learning to assign objects to classes given examples
- Learner (classifier)

A typical supervised text learning scenario.
Difference with texts

- M.L classification techniques used for structured data
- Text: lots of features and lot of noise
- No fixed number of columns
- No categorical attribute values
- Data scarcity
- Larger number of class label
- Hierarchical relationships between classes less systematic unlike structured data
Techniques

- **Nearest Neighbor Classifier**
 - Lazy learner: remember all training instances
 - *Decision on test document:* distribution of labels on the training documents most similar to it
 - Assigns large weights to rare terms

- **Feature selection**
 - Removes terms in the training documents which are statistically uncorrelated with the class labels,

- **Bayesian classifier**
 - Fit a generative term distribution $\Pr(d|c)$ to each class c of documents $\{d\}$.
 - *Testing:* The distribution most likely to have generated a test document is used to label it.
Other Classifiers

- **Maximum entropy classifier:**
 - Estimate a direct distribution $Pr(c|d)$ from term space to the probability of various classes.

- **Support vector machines:**
 - Represent classes by numbers
 - Construct a direct function from term space to the class variable.

- **Rule induction:**
 - Induce rules for classification over diverse features
 - E.g.: information from ordinary terms, the structure of the HTML tag tree in which terms are embedded, link neighbors, citations
Other Issues

- **Tokenization**
 - *E.g.* replacing monetary amounts by a special token

- **Evaluating text classifier**
 - **Accuracy**
 - Training speed and scalability
 - Simplicity, speed, and scalability for document modifications
 - Ease of diagnosis, interpretation of results, and adding human judgment and feedback
Benchmarks for accuracy

- **Reuters**
 - 10,700 labeled documents
 - 10% documents with multiple class labels

- **OHSUMED**
 - 348,566 abstracts from medical journals

- **20NG**
 - 18,800 labeled USENET postings
 - 20 leaf classes, 5 root level classes

- **WebKB**
 - 8,300 documents in 7 academic categories.

- **Industry**
 - 10,000 home pages of companies from 105 industry sectors
 - Shallow hierarchies of sector names
Measures of accuracy

- Assumptions
 - Each document is associated with exactly one class.
 - OR
 - Each document is associated with a subset of classes.

- Confusion matrix (M)
 - For more than 2 classes
 - $M[i; j]$: number of test documents belonging to class i which were assigned to class j
 - *Perfect classifier:* diagonal elements $M[i; i]$ would be nonzero.
Evaluating classifier accuracy

- **Two-way ensemble**
 - To avoid searching over the power-set of class labels in the subset scenario
 - Create positive \((C_d) \) and negative classes \((\overline{C_d}) \) for each document \(d \) (E.g.: “Sports” and “Not sports” (all remaining documents))

- **Recall and precision**
 - \(2 \times 2 \) contingency matrix per \((d,c) \) pair
 - \(M_{d,c}[0,0] = [c \in C_d \text{ and classier outputs } c] \)
 - \(M_{d,c}[0,1] = [c \in C_d \text{ and classier does not output } c] \)
 - \(M_{d,c}[1,0] = [c \notin C_d \text{ and classier outputs } c] \)
 - \(M_{d,c}[1,1] = [c \notin C_d \text{ and classier does not output } c] \)
Evaluating classifier accuracy (contd.)

- micro averaged contingency matrix
 \[M_\mu = \sum_{d,c} M_{d,c} \]
- micro averaged contingency matrix
 \[M_c = \frac{1}{|C|} \sum_c \sum_d M_{c,d} \]
- micro averaged precision and recall
 - Equal importance for each document
 \[M_\mu (\text{precision}) = \frac{M_\mu \left[0,0 \right]}{M_\mu \left[0,0 \right] + M_\mu \left[1,0 \right]} \quad M_\mu (\text{recall}) = \frac{M_\mu \left[0,0 \right]}{M_\mu \left[0,0 \right] + M_\mu \left[0,1 \right]} \]

- Macro averaged precision and recall
 - Equal importance for each class
 \[M_c (\text{precision}) = \frac{M_c \left[0,0 \right]}{M_c \left[0,0 \right] + M_c \left[1,0 \right]} \quad M_c (\text{recall}) = \frac{M_c \left[0,0 \right]}{M_c \left[0,0 \right] + M_c \left[0,1 \right]} \]
Evaluating classifier accuracy (contd.)

- Precision – Recall tradeoff
 - Plot of precision vs. recall: Better classifier has higher curvature
 - Harmonic mean: Discard classifiers that sacrifice one for the other

\[
F_1 = \frac{2 \times \text{recall} \times \text{precision}}{\text{recall} + \text{precision}}
\]
Nearest Neighbor classifiers (1/7)

- Intuition
 - similar documents are expected to be assigned the same class label.
 - Vector space model + cosine similarity
 - Training:
 - Index each document and remember class label
Nearest Neighbor classifiers (2/7)

• Testing:
 ♦ Fetch “k” most similar document to given document
 – Majority class wins
 – **Alternative:** Weighted counts – counts of classes weighted by the corresponding similarity measure
 \[
 s(d_q,c) = \sum_{d_c \in kNN(d_q)} s(d_q,d_c)
 \]
 – **Alternative:** per-class offset \(b_c \) which is tuned by testing the classifier on a portion of training data held out for this purpose.
 \[
 s(d_q,c) = b_c + \sum_{d_c \in kNN(d_q)} s(d_q,d_c)
 \]
Nearest Neighbor classifiers (3/7)

Nearest neighbor classification

Test document

Training documents

Nearest neighbor classification
Nearest Neighbor classifiers (4/7)

- Pros
 - Easy availability and reuse of inverted index
 - Collection updates trivial
 - Accuracy comparable to best known classifiers
Nearest Neighbor classifiers (5/7)

- Cons
 - Iceberg category questions
 - involves as many inverted index lookups as there are distinct terms in d_q,
 - scoring the (possibly large number of) candidate documents which overlap with d_q in at least one word,
 - sorting by overall similarity,
 - picking the best k documents,
 - Space overhead and redundancy
 - Data stored at level of individual documents
 - No distillation
Nearest Neighbor classifiers (6/7)

- Workarounds
 - To reducing space requirements and speed up classification
 - Find clusters in the data
 - Store only a few statistical parameters per cluster.
 - Compare with documents in only the most promising clusters.
 - Again….
 - Ad-hoc choices for number and size of clusters and parameters.
 - k is corpus sensitive
Nearest Neighbor classifiers (7/7)

- TF-IDF
 - TF-IDF done for whole corpus
 - Interclass correlations and term frequencies unaccounted for
 - Terms which occur relatively frequent in some classes compared to others should have higher importance
 - Overall rarity in the corpus is not as important.
Feature selection (1/11)

- **Data sparsity:**
 - Term distribution could be estimated if training set larger than number of features, however this is not the case.
 - Vocabulary $W \Rightarrow 2^{|W|}$ documents.
 - For Reuters, that number would be $2^{30,000} \approx 10^{10,000}$ but only about 10300 documents are available.

- **Over-fitting problem**
 - Joint distribution may fit training instances.
 - But may not fit unforeseen test data that well.
Feature selection (2/11)

- Marginal rather than joint
 - Marginal distribution of each term in each class
 - Empirical distributions may not still reflect actual distributions if data is sparse
 - Therefore feature selection is needed

 - Purposes:
 - Improve accuracy by avoiding over fitting
 - maintain accuracy while discarding as many features as possible to save a great deal of space for storing statistics

 - Heuristic, guided by linguistic and domain knowledge, or statistical.
Feature selection (3/11)

- **Perfect feature selection**
 - goal-directed
 - pick all possible subsets of features
 - for each subset train and test a classifier
 - retain that subset which resulted in the highest accuracy.
 - COMPUTATIONALLY INFEASIBLE

- **Simple heuristics**
 - Stop words like “a”, “an”, “the” etc.
 - Empirically chosen thresholds (task and corpus sensitive) for ignoring “too frequent” or “too rare” terms
 - Discard “too frequent” and “too rare terms”

- **Larger and complex data sets**
 - Confusion with stop words
 - Especially for topic hierarchies

- **Two basic strategies**
 - Starts with the empty set and includes good features (Greedy inclusion algorithm)
 - Starts from complete feature set and exclude irrelevant features (Truncation algorithm)
Feature selection(4/11)

- Greedy inclusion algorithm
 (most commonly used in the text domain)
 1. Compute, for each term, a measure of discrimination amongst classes.
 2. Arrange the terms in decreasing order of this measure.
 3. Retain a number of the best terms or features for use by the classifier.

- Greedy because
 - measure of discrimination of a term is computed independently of other terms
 - Over-inclusion: mild effects on accuracy
Feature selection (5/11)

• Measure of discrimination depends on:
 • model of documents
 • desired speed of training
 • ease of updates to documents and class assignments.

• Observations
 • Although different measures will result in somewhat different term ranks, the sets included for acceptable accuracy tend to have large overlap.
 • Therefore, most classifiers will be insensitive to specific choice of discrimination measures.
Feature selection (6/11)

- The χ^2 test
 - Build a 2 x 2 contingency matrix per class-term pair

 $k_{i,0} = \text{number of documents in class } i \text{ not containing term } t$
 $k_{i,1} = \text{number of documents in class } i \text{ containing term } t$

 - Under the independence hypothesis
 - Aggregates the deviations of observed values from expected values
 - Larger the value of χ^2, the lower is our belief that the independence assumption is upheld by the observed data.
Feature selection (7/11)

• The χ^2 test

$$\chi^2 = \sum_{l,m} \frac{k_{l,m} - n \Pr(C = l) \Pr(I_t = m)}{n \Pr(C = l) \Pr(I_t = m)} = \frac{n(k_{11}k_{00} - k_{10}k_{01})^2}{(k_{11} + k_{10})(k_{01} + k_{00})(k_{11} + k_{01})(k_{10} + k_{00})}$$

• Feature selection process
 • Sort terms in decreasing order of their χ^2 values,
 • Train several classifier with varying number of features
 • Stopping at the point of maximum accuracy.
Feature selection (8/11)

• Truncation algorithms
 • Start from the complete set of terms T
 1. Keep selecting terms to drop
 2. Till you end up with a feature subset
 3. Question: When should you stop truncation?
 • Two objectives
 ◆ minimize the size of selected feature set F.
 ◆ Keep the distorted distribution $Pr(C|F)$ as similar as possible to the original $Pr(C|T)$
Feature selection (9/11)

• Truncation Algorithms: Example
 • Kullback-Leibler (KL)
 ✷ Measures similarity or distance between two distributions
 • Markov Blanket
 ✷ Let X be a feature in T. Let $M \subseteq T \setminus \{X\}$
 ✷ The presence of M renders the presence of X unnecessary as a feature => M is a Markov blanket for X
 ✷ Technically
 • M is called a Markov blanket for $X \in T$ if X is conditionally independent of $(T \cup C) \setminus (M \cup \{X\})$ given M
 • eliminating a variable because it has a Markov blanket contained in other existing features does not increase the KL distance between $\Pr(C|T)$ and $\Pr(C|F)$.
Feature selection (10/11)

• Finding Markov Blankets
 • Absence of Markov Blanket in practice
 • Finding approximate Markov blankets
 ♦ Purpose: To cut down computational complexity
 ♦ search for Markov blankets M to those with at most k features.
 ♦ given feature X, search for the members of M to those features which are most strongly correlated (using tests similar to the X^2 or MI tests) with X.

• Example: For Reuters dataset, over two-thirds of T could be discarded while increasing classification accuracy
Feature selection (11/11)

• General observations on feature selection
 • The issue of document length should be addressed properly.
 • Choice of association measures does not make a dramatic difference
 • Greedy inclusion algorithms scale nearly linearly with the number of features
 • Markov blanket technique takes time proportional to at least

• Advantage of Markov blankets over greedy inclusion
 ♦ Greedy may include features with high individual correlations even though one subsumes the other
 ♦ Features individually uncorrelated could be jointly more correlated with the class
 • This rarely happens