Text Representation
http://www.cse.iitb.ac.in/~soumen/mining-the-web/

Ahmed Rafea
Text Representation

- Document Preprocessing
- Vector Space Model for Document Storage
- Measure of Similarity
Document preprocessing (1/3)

- **Tokenization**
 - Filtering away tags
 - Tokens regarded as nonempty sequence of characters excluding spaces and punctuations.
 - Token represented by a suitable integer, tid, typically 32 bits
 - Optional: stemming/conflation of words
 - Result: document (did) transformed into a sequence of integers (tid, pos)
Document preprocessing (2/3)

- **Stopwords**
 - Function words and connectives
 - Appear in large number of documents and little use in pinpointing documents
 - **Issues**
 - Queries containing only stopwords ruled out
 - Polysemous words that are stopwords in one sense but not in others
 - E.g.; *can* as a verb vs. *can* as a noun
Document preprocessing (3/3)

- **Stemming**
 - Remove inflections that convey parts of speech, tense and number
 - E.g.: university and universal both stem to universe.
 - Techniques
 - morphological analysis (e.g., Porter's algorithm)
 - dictionary lookup (e.g., WordNet).
 - Stemming may increase the number of documents in the response of a query but at the price of precision
 - It is not a good idea to stem Abbreviations, and names coined in the technical and commercial sectors
 - E.g.: Stemming “ides” to “IDE”, the hard disk standard, “SOCKS” firewall protocol to “sock” worn on the foot, may be bad!
The vector space model (1/4)

- Documents represented as vectors in a multi-dimensional Euclidean space
 - Each axis = a term (token)
- Coordinate of document d in direction of term t determined by:
 - Term frequency TF(d,t)
 - number of times term t occurs in document d, scaled in a variety of ways to normalize document length
 - Inverse document frequency IDF(t)
 - to scale down the coordinates of terms that occur in many documents
The vector space model (2/4)

- **Term frequency**

 \[\text{TF}(d, t) = \frac{n(d, t)}{\sum_{\tau} n(d, \tau)} \]

 \[\text{TF}(d, t) = \frac{n(d, t)}{\max_{\tau} (n(d, \tau))} \]

- **Cornell SMART system uses a smoothed version**

 \[TF(d,t) = 0 \quad \text{if} \quad n(d,t) = 0 \]

 \[TF(d,t) = 1 + \log(1 + n(d,t)) \quad \text{otherwise} \]
The vector space model (3/4)

- Inverse document frequency
 - Given
 - D is the document collection and D_t is the set of documents containing t
 - Formulae
 - mostly dampened functions of $\frac{D}{|D_t|}$
 - SMART

$$IDF(t) = \log\left(\frac{1+|D|}{|D_t|}\right)$$
Vector space model (4/4)

- Coordinate of document d in axis t
 - $d_t = TF(d, t) \times IDF(t)$
 - Transformed to \tilde{d} in the TFIDF-space

- Query q
 - Interpreted as a document
 - Transformed to \tilde{q} in the same TFIDF-space as d
Measures of Similarity (1/2)

- Distance measure
 - Magnitude of the vector difference
 - $\cdot | \vec{d} - \vec{q} |$
 - Document vectors must be normalized to unit length (L_1 or L_2)
 - Else shorter documents dominate (since queries are short)

- Cosine similarity
 - cosine of the angle between \vec{d} and \vec{q}
 - Shorter documents are penalized
Measures of Similarity (2/2)

- Jaccard coefficient of similarity between document d_1 and d_2
- $T(d) =$ set of tokens in document d
 - Symmetric, reflexive
 - Forgives any number of occurrences and any permutations of the terms.

\[
. r'(d_1, d_2) = \frac{|T(d_1) \cap T(d_2)|}{|T(d_1) \cup T(d_2)|}
\]

- Symmetric, reflexive
- Forgives any number of occurrences and any permutations of the terms.